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Abstract: Synthetic Aperture Sonar (SAS) can be used commonly in many different under-
water applications such as mine countermeasures, habitat mapping and archeology. It offers
high resolution images over wide swath areas. A single-view SAS image however may lack
critical information for an object classification task (a mine hidden by a rock for example, or
a partial image). Instead, multi-view images of the same scene could provide much richer in-
formation. In this context, Thales developed a sonar capable of processing three views under
different angles simultaneously. CMRE and Thales have teamed up to investigate deep learning
applications for multi-view. This paper demonstrates the potential benefits of such a technology
in the matter of target classification. The data used for this study are real SAS data collected at
sea trials by the MUSCLE. The preliminary work compares different ways of classifying with
Convolutional Neural Network (CNN) architectures. Transfer learning is also performed from
pre-trained models.
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1. INTRODUCTION

Synthetic Aperture Sonar (SAS) is commonly used in underwater applications such as mine
countermeasures [1], habitat mapping [2] and archeology [3]. The principle is based on the co-
herent combination of successive pings synthesized in a large array. Compared to real aperture,
the technique delivers a much higher resolution independent of range and frequency. Indeed,
it is able to image the seabed with centimeter resolution up to hundreds of meters range. To
perform, the sensor needs to move at a constant speed following a known path. In the context
of mine countermeasures, a SAS payload is embedded on an Autonomous Underwater Vehicle
(AUV). This sensor platform has the particularity of incorporating an Automatic Target Recog-
nition (ATR) system [4]. During missions, large quantities of data are collected and processed
in order to detect a Region of Interest (ROI) and classify it. In recent years, Convolutional
Neural Network (CNN) has led to very good performance on sonar image classification [5].
However, this stage is largely dependent on the image quality and on the view-angle of the
object. Indeed, if the latter is hidden behind a rock, it could mislead the process. Consequently,
the ATR system adjusts the AUV’s mission path to revisit potential target locations. The method
is nevertheless time-consuming and uncertain.

A new approach is proposed by Thales [6]. They built a sonar able to simultaneously
capture three high-resolution views under different angles. This system provides a new way of
classifying mines. Rather than a single-view, the classification stage can exploit much richer
information, either about the mine-like object or its environment. With the great expertise of
the CMRE in ATR, Thales and the Centre have teamed up to explore the possibilities in the
matter of target classification.

In the present study, Section 2 describes the multi-view classification process, from the
proposed CNN model architectures to data processing. Section 3 provides the analysis of the
results and Section 4 finally concludes the study.

2. MULTI-VIEW CLASSIFICATION

2.1. Convolutional Neural Networks

A CNN is a specific type of neural network which is specially used for image analysis. The
CNN model architecture in Fig. 1a is used for the single-view classification (CNN A). It is
taken from [7] where it has already proven its efficiency. It consists of a stack of convolutional
and average pooling layers. On one hand, the convolutional layer applies a linear convolutional
filter followed by a nonlinear activation function (ReLU). Thus, feature maps are generated
from the input data. On the other hand, the pooling layer reduces the size of the image by only
keeping the most important pixels. It distorts the image by losing the precise pixel positions.
This helps to limit the risks of overfitting. After the feature extraction stage, the neural network
finishes via a fully connected layer (also called dense layer). It combines all the specific char-
acteristics detected by the previous layers and gives as result a binary prediction (i.e. clutter or
target). This model serves as a basis for the building of our multi-view classifier.

We propose two ways of classifying multiple-view images. The first one consists in clas-
sifying each image independently with the previous model (CNN A). The final predictions are
then averaged together to give the final result. Let us call this model CNN B.

For the second one (cf. Fig. 1b), we have 3 inputs that follow the same feature extraction



process on 3 independent branches. Then, the output branches are concatenated, just before the
classification stage. Finally, the fully connected layer gives a prediction according to a sigmoid
activation. Let us call this model CNN C.

(a) Single-view CNN architecture model (CNN A)

(b) Multi-view CNN architecture model (CNN C)

Fig. 1: CNN architectures

2.2. Datasets

Since 2007, CMRE has been conducting many sea trials. The Centre has collected a signif-
icant amount of SAS data with the SAS-equiped AUV called MUSCLE. We find there various
seafloor compositions and mine-like objects with high-resolution imagery. The system has a
center frequency of 300 kHz and a bandwidth of 60 kHz. It provides a resolution cell of 2.5 cm
in the along-track dimension and 1.25 cm in the range dimension.

The training of the single-view CNN model in Fig. 1a is already performed with data from 8
expeditions conducted between 2008 and 2013 (cf. Table 1). Therefore, only weights resulting
from the training are used. The data we have focuses on object detection from a specific trial
conducted in 2014, in Italy. The detection process is achieved by the algorithm detailed in
[8]. It delivers a rich database content such as muds, ripples, posidonias and various shapes
of targets (symmetric and asymmetric). However, we do not use all the database. In order to
build a multi-view dataset, only object detections with three different views are kept. It implies



that we are looking for the detections for which the AUV revisited the scene. The original
dataset is consequently reduced. In addition, by grouping the three views together, the number
of classifications is then divided by three. All images are labeled, either as clutter (class 0) or
as target (class 1).

By building this multi-view dataset, we try to get closer to what the Thales sonar imagery
could provide. However, we observe some differences. In fact, the sonar from Thales processes
SAS images under three fixed orientations. On our side, the angle view of the object is linked
to the way the AUV revisits the scene. In order to deal with this important feature, we propose
the following dataset (cf. Fig. 2). It consists in dividing the image wavenumber spectrum in
three equal parts and each part corresponds to a view. The process is based on [9] and will be
detail in a future paper. This generated dataset is denoted DS2.

Fig. 2: Generated multi-view images

Table 1: SAS datasets

Sea trials Type of dataset Targets Clutter
2008-2013 - Latvia, Italy, Spain Single-view images 2912 29280

2014 - Italy
Multi-view images (DS1) 116×3 40×3

Generated multi-view images (DS2) 348×3 120×3

Before input images are used by CNNs, a preprocessing stage is performed. The complex
SAS images are first interpolated by converting pixels into squares covering 1.5 cm in each
direction. Then, they are normalized so that pixel values fall between a fixed range, [−1,1].
The normalized image x′i j is:

x′i j = 2×
min

(
40, max

(
0, xi j− 1

N ∑m,n xmn
))

40
−1, (1)

where xi j represent the unnormalized pixel values and N is the total number of pixels in the
image.

Finally, the image is centered around the object highlight and cropped to an area of approx-
imately 4.005 m × 4.005 m (corresponding to a size of 267 pixels × 267 pixels).



3. EXPERIMENTAL RESULTS

The weights associated with the convolution layers from the feature extraction stage in CNN
A (cf. Fig. 1a) are kept for the three branches of CNN C (cf. Fig. 1b). After the concatenation
of the independent branches, the parameters from the fully connected layer needs to be re-
trained, according to both multi-view datasets (DS1 and DS2). They are trained by minimizing
the binary cross-entropy loss using back-propagation through RMSprop with a learning rate of
10−3. One third of the respective datasets are used for the training. It represents a small amount
of data. However, only 13 parameters have to be trained. Data augmentation is accomplished
by randomly mixing the order of the input images in the 3 branches of the CNN model.

In order to find out how accurate are the predictions, we use different performance metrics,
such as precision, recall, F1-score and AUC. These measures are expressed below and the
parameters are detailed in Table 2. The classification results are shown in Table 3.

Table 2: Definition of TP, FN, FP and TN

Actual positive Actual negative
Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

On one hand, the precision metric delivers a ratio of correctly predicted targets to the total
predicted targets. On the other hand, the recall metric corresponds to the ratio of correctly
predicted targets to the total true targets. Finally, F1-score is the harmonic mean of precision
and recall.

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1 = 2× precision× recall
precision+ recall

(4)

Table 3: Classification performance

Dataset Model Precision Recall F1

DS1
CNN A 0.967 0.833 0.895
CNN B 0.992 0.936 0.963
CNN C 0.947 1 0.972

DS2
CNN A 0.919 0.736 0.817
CNN B 0.942 0.747 0.833
CNN C 0.95 0.874 0.91

Fig. 3 shows the Receiver Operating Characteristic (ROC) by plotting the probability of
false alarm over the probability of detection, while threshold is varied. With both datasets,
the best results are delivered by CNN C. In fact, CNN B does not take full advantages of the
different object points of view. Because it averages predictions, it is not able to give more
prominence to a specific image with valuable information. We can explain the drop in perfor-
mance with the DS2 because of its degraded resolution. It also does not allow to obtain distinct
views of the object (just a few degrees).



(a) CNNs performance with DS1 (b) CNNs performance with DS2

Fig. 3: Classification performance

4. CONCLUSION

In this preliminary work, we wanted to investigate the potential of multi-view SAS im-
age classification. We described two ways to enhance SAS classifier performance. One inde-
pendently classifies three images and averages the predictions. The other one fuses the data
resulting from three independent feature extraction branches and delivers the prediction. We
compared them with two types of multi-view dataset. The different classification tests showed
very encouraging results. Fusing data at the end of the feature level demonstrated a significant
gain in terms of performance. Indeed, it makes the best use of additional information given by
the complementary views.

Future work will aim to detail the process of generating the multi-view dataset. We would
also like to enlarge our datasets by gathering more multi-view images. This would allow to
reinforce the training of the last layer and eventually to build new CNN models from scratch.
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