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Abstract

A graph-based prior is proposed for parametric semi-supervised classi-
fication. The prior utilizes both labelled and unlabelled data; it also in-
tegrates features from multiple views of a given sample (e.g., multiple
sensors), thus implementing a Bayesian form of co-training. An EM
algorithm for training the classifier automatically adjusts the tradeoff be-
tween the contributions of: (a) the labelled data; (b) the unlabelled data;
and (c) the co-training information. Active label query selection is per-
formed using a mutual information based criterion that explicitly uses the
unlabelled data and the co-training information. Encouraging results are
presented on public benchmarks and on measured data from single and
multiple sensors.

1 Introduction

In many pattern classification problems, the acquisition of labelled training data is costly
and/or time consuming, whereas unlabelled samples can be obtained easily. Semi-
supervised algorithms that learn from both labelled and unlabelled samples have been the
focus of much research in the last few years; a comprehensive review up to 2001 can be
found in [13], while more recent references include [1,2,6,7,16–18].

Most recent semi-supervised learning algorithms work by formulating the assumption that
“nearby” points, and points in the same structure (e.g., cluster), should have similar labels
[6,7,16]. This can be seen as a form of regularization, pushing the class boundaries toward
regions of low data density. This regularization is often implemented by associating the
vertices of a graph to all the (labelled and unlabelled) samples, and then formulating the
problem on the vertices of the graph [6,16–18].

While current graph-based algorithms are inherently transductive —i.e., they cannot be
used directly to classify samples not present when training — our classifier is paramet-
ric and the learned classifier can be used directly on new samples. Furthermore, our al-
gorithm is trained discriminatively by maximizing a concave objective function; thus we
avoid thorny local maxima issues that plague many earlier methods.

Unlike existing methods, our algorithm automatically learns the relative importance of the
labelled and unlabelled data. When multiple views of the same sample are provided (e.g.
features from different sensors), we develop a new Bayesian form of co-training [4]. In



addition, we also show how to exploit the unlabelled data and the redundant views of the
sample (from co-training) in order to improve active label query selection [15].

The paper is organized as follows. Sec. 2 briefly reviews multinomial logistic regression.
Sec. 3 describes the priors for semi-supervised learning and co-training. The EM algorithm
derived to learn the classifiers is presented in Sec. 4. Active label selection is discussed in
Sec. 5. Experimental results are shown in Sec. 6, followed by conclusions in Sec. 7.

2 Multinomial Logistic Regression

In an m-class supervised learning problem, one is given a labelled training setDL =
{(x1,y1), . . . , (xL,yL)}, wherexi ∈ Rd is a feature vector andyi the corresponding
class label. In “1-of-m” encoding,yi = [y(1)

i , . . . , y
(m)
i ] is a binary vector, such that

y
(c)
i = 1 andy

(j)
i = 0, for j 6= c, indicates that samplei belongs to classc. In multinomial

logistic regression [5], the posterior class probabilities are modelled as

log P (y(c) = 1|x) = xT w(c) − log
∑m

k=1 exp(xT w(k)), for c = 1, . . . ,m, (1)

wherew(c) ∈ Rd is the class-c weight vector. Notice that since
∑m

c=1 P (y(c)=1|x) = 1,
one of the weight vectors is redundant; we arbitrarily choose to setw(m) = 0, and consider
the(d (m−1))-dimensional vectorw = [(w(1))T , ..., (w(m−1))T ]T . Estimation ofw may
be achieved by maximizing the log-likelihood (withY ≡ {y1, ...,yL}) [5]

`(w) ≡ log P (Y|w) =
∑L

i=1

(∑m
c=1 y

(c)
i xT

i w(c) − log
∑m

j=1 exp(xT
i w(j))

)
. (2)

In the presence of a priorp(w), we seek a maximuma posteriori (MAP) estimate,
ŵ = arg maxw{`(w) + log p(w)}. Actually, if the training data is separable,`(w) is
unbounded, and a prior is crucial.

Although we focus on linear classifiers, we may see thed-dimensional feature vectorsx as
having resulted from some deterministic, maybe nonlinear, transformation of an input raw
feature vectorr; e.g., in a kernel classifier,xi = [1,K(ri, r1), ...,K(ri, rL)] (d = L+1).

3 Graph-Based Data-Dependent Priors

3.1 Graph Laplacians and Regularization for Semi-Supervised Learning

Consider a scalar functionf = [f1, ..., f|V |]T , defined on the setV = {1, 2, ..., |V |} of
vertices of an undirected graph(V,E). Each edge of the graph, joining verticesi andj, is
given a weightkij = kji ≥ 0, and we collect all the weights in a|V | × |V | matrix K. A
natural way to measure how muchf varies across the graph is by the quantity∑

i

∑
j

kij(fi − fj)2 = 2 fT ∆f , (3)

where∆ = diag{
∑

j k1j , ...,
∑

j k|V |j}−K is the so-called graph Laplacian [2]. Notice
thatkij ≥ 0 (for all i, j) guarantees that∆ is positive semi-definite and also that∆ has (at
least) one null eigenvalue (1T∆1 = 0, where1 has all elements equal to one).

In semi-supervised learning, in addition toDL, we are givenU unlabelled samplesDU =
{xL+1, . . . ,xL+U}. To use (3) for semi-supervised learning, the usual choice is to assign
one vertex of the graph to each sample inX = [x1, . . . ,xL+U ]T (thus |V | = L + U ),
and to letkij represent some (non-negative) measure of “similarity” betweenxi andxj . A
Gaussian random field (GRF) is defined on the vertices ofV (with inverse varianceλ)

p(f) ∝ exp{−λ fT∆f/2},



in which configurations that vary more (according to (3)) are less probable. Most graph-
based approaches estimate the values off , given the labels, usingp(f) (or some modifica-
tion thereof) as a prior. Accordingly, they work in a strictly transductive manner.

3.2 Non-Transductive Semi-Supervised Learning

We first consider two-class problems (m = 2, thusw ∈ Rd). In contrast to previous uses of
graph-based priors, we definef as the real functionf (defined over the entire observation
space) evaluated at the graph nodes. Specifically,f is defined as a linear function ofx,
and at the graph nodei, fi ≡ f(xi) = wT xi. Then,f = [f1, ..., f|V |]T = Xw, andp(f)
induces a Gaussian prior onw, with precision matrixA = XT ∆X,

p(w) ∝ exp{−(λ/2) wT XT∆Xw} = exp{−(λ/2) wT Aw}. (4)

Notice that since∆ is singular,A may also be singular, and the corresponding prior may
therefore be improper. This is no problem for MAP estimation ofw because (as is well
known) the normalization factor of the prior plays no role in this estimate. If we include
extra regularization, by adding a non-negative diagonal matrix toA, the prior becomes

p(w) ∝ exp
{
−(1/2) wT (λ0A + Λ) w

}
, (5)

where we may chooseΛ = diag{λ1, ..., λd}, Λ = λ1I, or evenΛ = 0.

Form>2, we define(m−1) identical independent priors, one for eachw(c), c = 1, ...,m.
The joint prior onw = [(w(1))T , ..., (w(m−1))T ]T is then

p(w|λ) ∝
m−1∏
c=1

exp{−1
2

(w(c))T
(
λ

(c)
0 A + Λ(c)

)
w(c)} = exp{−1

2
wT Γ(λ)w}, (6)

whereλ is a vector containing all theλ(c)
i parameters,Λ(c) = diag{λ(c)

1 , ..., λ
(c)
d }, and

Γ(λ) = diag{λ(1)
0 , ..., λ

(m−1)
0 } ⊗A + block-diag{Λ(1), ...,Λ(m−1)}. (7)

Finally, since all theλ’s are inverses of variances, the conjugate priors are Gamma [3]:
p(λ(c)

0 |α0, β0) = Ga(λ(c)
0 |α0, β0), and p(λ(c)

i |α1, β1) = Ga(λ(c)
i |α1, β1), for c =

1, ...,m− 1 andi = 1, ..., d. Usually,α0, β0, α1, andβ1 are given small values indicating
diffuse priors. In the zero limit, we obtain scale-invariant (improper) Jeffreys hyper-priors.

Summarizing, our model for semi-supervised learning includes the log-likelihood (2), a
prior (6), and Gamma hyper-priors. In Section 4, we present a simple and computationally
efficient expectation-maximization (EM) algorithm for obtaining the MAP estimate ofw.

3.3 Exploiting Features from Multiple Sensors: The Co-Training Prior

In some applications several sensors are available, each providing a different set of features.
For simplicity, we assume two sensorss ∈ {1, 2}, but everything discussed here is easily
extended to any number of sensors. Denote the features from sensors, for samplei, asx(s)

i ,
andSs as the set of sample indices for which we have features from sensors (S1∪S2 =
{1, ..., L + U}). Let O =S1 ∩ S2 be the indices for which both sensors are available, and
OU = O ∩ {L + 1, ..., L + U} the unlabelled subset ofO.

By using the samples inS1 andS2 as two independent training sets, we may obtain two sep-
arate classifiers (denoted̂w1 andŵ2). However, we can coordinate the information from
both sensors by using an idea known asco-training[4]: on theOU samples, classifierŝw1

andŵ2 should agree as much as possible. Notice that, in a logistic regression framework,
the disagreement between the two classifiers on theOU samples can be measured by∑

i∈OU
[(w1)T x

(1)
i − (w2)T x

(2)
i ]2 = ωT C ω, (8)



whereω = [(w1)T (w2)T ]T andC =
∑

i∈OU
[(x1

i )
T (−x2

i )
T ]T [(x1

i )
T (−x2

i )
T ]. This

suggests the “co-training prior” (whereλco is an inverse variance):

p(w1,w2) = p(ω) ∝ exp
{
−(λco/2) ωTCω

}
. (9)

This Gaussian prior can be combined with two smoothness Gaussian priors onw1 andw2

(obtained as described in Section 3.2); this leads to a prior which is still Gaussian,

p(w1,w2) = p(ω) ∝ exp
{
−(1/2) ωT

(
λcoC + block-diag{Γ1,Γ2}

)
ω

}
, (10)

whereΓ1 andΓ2 are the two graph-based precision matrices (see (7)) forw1 andw2.
We can again adopt a Gamma hyper-prior forλco. Under this prior, and with a logistic
regression likelihood as above, estimates ofw1 andw2 can easily be found using minor
modifications to the EM algorithm described in Section 4. Computationally, this is only
slightly more expensive than separately training the two classifiers.

4 Learning Via EM

To find the MAP estimatêw, we use the EM algorithm, withλ as missing data, which
is equivalent to integrating outλ from the full posterior before maximization [8]. For
simplicity, we will only describe the single sensor case (no co-training).

E-step: We compute the expected value of the complete log-posterior, givenY and the
current parameter estimatêw: Q(w|ŵ) ≡ E[log p(w,λ|Y)|ŵ]. Since

log p(w,λ|Y) = log p(Y|w)− (1/2)wT Γ(λ)w + K, (11)
(whereK collects all terms independent ofw) is linear w.r.t. all theλ parameters (see (6)
and (7)), we just have to plug their conditional expectations into (11):

Q(w|ŵ) = log p(Y|w)− (1/2)wT E[Γ(λ)|ŵ] w = `(w)− (1/2)wT Υ(ŵ) w. (12)
We consider several different choices for the structure of theΓ matrix. The necessary
expectations have well-known closed forms, due to the use of conjugate Gamma hyper-
priors [3]. For example, if theλ(c)

0 arem− 1 free non-negative parameters, we have

γ
(c)
0 ≡ E[λ(c)

0 |ŵ] = (2 α0 + d) [2 β0 + (ŵ(c))T Aŵ(c)]−1.

for c = 1, ...,m − 1. For λ
(c)
0 = λ0, we still have a simple closed-form expres-

sion for E[λ0|ŵ], and the same is true for theλ(c)
i parameters, fori > 0. Finally,

Υ(ŵ) ≡ E[Γ(λ)|ŵ] results from replacing theλ’s in (7) by the corresponding conditional
expectations.

M-step: Given matrixΥ(ŵ), the M-step reduces to a logistic regression problem with a
quadratic regularizer,i.e., maximizing (12). To this end, we adopt the bound optimization
approach (see details in [5, 11]). LetB be a positive definite matrix such that−B bounds
below (in the matrix sense) the Hessian of`(w), which is negative definite, andg(w) is
the gradient of̀ (w). Then, we have the following lower bound onQ(w|ŵ):

Q(w|ŵ) ≥ l(ŵ) + (w − ŵ)T g(ŵ)− [(w − ŵ)T B(w − ŵ) + wT Υ(ŵ)w]/2.

The maximizer of this lower bound,̂wnew = (B + Υ(ŵ))−1 (Bŵ + g(ŵ)), is guaranteed
to increase the Q-function,Q(ŵnew|ŵ) ≥ Q(ŵ|ŵ), and we thus obtain a monotonic gen-
eralized EM algorithm [5, 11]. This (maybe costly) matrix inversion can be avoided by a
sequential approach where we only maximize w.r.t. one element ofw at a time, preserving
the monotonicity of the procedure. The sequential algorithm visits one particular element
of w, saywu, and updates its estimate by maximizing the bound derived above, while
keeping all other variables fixed at their previous values. This leads to

ŵnew
u = ŵu + [gu(ŵ)− (Υ(ŵ)ŵ)u] [(B + Υ(ŵ))uu]−1

, (13)
andŵnew

v = ŵv, for v 6= u. The total time required by a full sweep for allu = 1, ..., d is
O(md(L + d)); this may be much better than theO((dm)3) of the matrix inversion.



5 Active Label Selection

If we are allowed to obtain the label for one of the unlabelled samples, the following ques-
tion arises: which sample, if labelled, would provide the most information?

Consider the MAP estimatêw provided by EM. Our approach uses a Laplace approxima-
tion of the posteriorp(w|Y) ' N (w|ŵ,H−1), whereH is the posterior precision matrix,
i.e., the Hessian of minus the log-posteriorH = ∇2(− log p(w|Y)). This approximation is
known to be accurate for logistic regression under a Gaussian prior [14]. By treatingΥ(ŵ)
(the expectation ofΓ(λ)) as deterministic, we obtain an evidence-type approximation [14]

H=∇2[− log(p(Y|w)p(w|Υ(ŵ)))] = Υ(ŵ) +
∑L

i=1(diag{pi} − pip
T
i )⊗ xix

T
i ,

wherepi is the(m− 1)-dimensional vector computed from (1), thec-th element of which
indicates the probability that samplexi belongs to classc.

Now let x∗ ∈ DU be an unlabelled sample andy∗ its label. Assume that the MAP esti-
mateŵ remains unchanged after includingy∗. In Sec. 7 we will discuss the merits and
shortcomings of this assumption, which is only strictly valid whenL → ∞. Accepting it
implies that after labelingx∗, andregardless ofy∗, the posterior precision changes to

H′ = H + (diag{p∗} − p∗p
T
∗ )⊗ x∗x

T
∗ . (14)

Since the entropy of a Gaussian with precisionH is (−1/2) log |H| (up to an additive
constant), the mutual information (MI) betweeny∗ andw (i.e., the expected decrease in
entropy ofw wheny∗ is observed) isI(w;y∗) = (1/2) log {|H′|/|H|}. Our criterion
is then: the best sample to label is the one that maximizesI(w;y∗). Further insight into
I(w;y∗) can be obtained in the binary case (wherep is a scalar); here, the matrix identity
|H + p∗(1− p∗)x∗x

T
∗ | = |H|(1 + p∗(1− p∗)xT

∗ H−1x∗) yields

I(w;y∗) = (1/2) log(1 + p∗(1− p∗)xT
∗ H−1x∗). (15)

This MI is larger whenp∗ ≈ 0.5, i.e., for samples with uncertain classifications. On the
other hand, withp∗ fixed,I(w;y∗) grows withxT

∗ H−1x∗, i.e., it is large for samples with
high variance of the corresponding class probability estimate. Summarizing, (15) favors
samples with uncertain class labels and high uncertainty in the class probability estimate.

6 Experimental Results

We begin by presenting two-dimensional synthetic examples to visually illustrate our semi-
supervised classifier. Fig. 1 shows the utility of using unlabelled data to improve the deci-

Figure 1: Synthetic two-dimensional examples. (a) Comparison of the supervised logistic
linear classifier (boundary shown as dashed line) learned only from the labelled data (shown
in color) with the proposed semi-supervised classifier (boundary shown as solid line) which
also uses the unlabelled samples (shown as dots). (b) A RBF kernel classifier obtained by
our algorithm, using two labelled samples (shaded circles) and many unlabelled samples.



Figure 2: (a)-(c) Accuracy (on UCI datasets) of the proposed method, the supervised SVM,
and the other semi-supervised classifiers mentioned in the text; a subset of samples is la-
belled and the others are treated as unlabelled samples. In (d), a separate holdout set is used
to evaluate the accuracy of our method versus the amount of labelled and unlabelled data.

sion boundary in linear and non-linear (kernel) classifiers (see figure caption for details).

Next we show results with linear classifiers on three UCI benchmark datasets. Results
with nonlinear kernels are similar, and therefore omitted to save space. We compare our
method against state-of-the-art semi-supervised classifiers: the GRF method of [18], the
SGT method of [10], and the transductive SVM (TSVM) of [9]. For reference, we also
present results for a standard SVM. To avoid unduly helping our method, we always use
a k=5 nearest neighbors graph, though our algorithm is not very sensitive tok. To avoid
disadvantaging other methods that do depend on such parameters, we use theirbestsettings.
Since these adjustments cannot be made in practice, the difference between our algorithm
and the others is under-represented. Each point on the plots in Fig. 2(a)-(c) is an average
of 20 trials: we randomly select 20 labelled sets which are used by every method. All
remaining samples are used as unlabelled by the semi-supervised algorithms.

Figs. 2(a)-(c) are transductive, in the sense that the unlabelled and test data are the same.
Our logistic GRF is non-transductive: after being trained, it may be applied to classify new
data without re-training. In Fig. 2(d) we present non-transductive results for the Ionosphere
data. Training took place using labelled and unlabelled data, and testing was performed on
200 new unseen samples. The results suggest that semi-supervised classifiers are most
relevant when the labelled set is small relative to the unlabelled set (as is often the case).

Our final set of results address co-training (Sec. 3.3) and active learning (Sec. 5), applied to
airborne sensing data for the detection of surface and subsurface land mines. Two sensors
were used: (1) a 70-band hyper-spectral electro-optic (EOIR) sensor; (2) an X-band syn-
thetic aperture radar (SAR). A simple (energy) “prescreener” detected potential targets; for
each of these, two feature vectors were extracted, of sizes 420 and 9, for the EOIR and SAR
sensors, respectively. 123 samples have features from the EOIR sensor alone, 398 from the



Figure 3: (a) Land mine detection ROC curves of classifiers designed using only hyper-
spectral (EOIR) features, only SAR features, and both. (b) Number of landmines detected
during the active querying process (dotted lines), for active training and random selection
(for the latter the bars reflect one standard deviation about the mean). ROC curves (solid)
are for the learned classifier as applied to the remaining samples.

SAR sensor alone, and 316 from both. This data will be made available upon request.

We first consider supervised and semi-supervised classification. For the purely supervised
case, a sparseness prior is used (as in [14]). In both cases a linear classifier is employed. For
the data for which only one sensor is available, 20% of it is labelled (selected randomly).
For the data for which both sensors are available, 80% is labelled (again selected randomly).
The results presented in Fig. 3(a) show that, in general, the semi-supervised classifiers
outperform the corresponding supervised ones, and the classifier learned from both sensors
is markedly superior to classifiers learned from either sensor alone.

In a second illustration, we use the active-learning algorithm (Sec. 5) to only acquire the
100 most informative labels. For comparison, we also show average results over 100 in-
dependent realizations for random label query selection (error bars indicate one standard
deviation). The results in Fig. 3(b) are plotted in two stages: first, mines and clutter are se-
lected during the labeling process (dashed curves); then, the 100 labelled examples are used
to build the final semi-supervised classifier, for which the ROC curve is obtained using the
remaining unlabelled data (solid curves). Interestingly, the active-learning algorithm finds
almost half of the mines while querying for labels. Due to physical limitations of the sen-
sors, the rate at which mines are detected drops precipitously after approximately 90 mines
are detected —i.e., the remaining mines are poorly matched to the sensor physics.

7 Discussion

7.1 Principal Contributions

Semi-supervised vs. Transductive: Unlike most earlier methods, after the training stage our
algorithm can directly classify new samples without computationally expensive re-training.

Tradeoff between labelled and unlabelled data: Automatically addressing the inherent
tradeoff between their relative contributions, we have ensured that even a small amount
of labelled data does not get overlooked because of an abundance of unlabelled samples.

Bayesian co-training: Using the proposed prior, classifiers for all sensors are improved
using: (a) the label information provided on the other types of data, and (b) samples drawn
from the joint distribution of features from multiple sensors.

Active label acquisition: We explicitly account for the knowledge of the unlabelled data and
the co-training information while computing the well known mutual information criterion.



7.2 Quality of Assumptions and Empirically Observed Shortcomings

The assumption that the mode of the posterior distribution of the classifier remains un-
changed after seeing an additional label is clearly not true at the beginning of the active
learning procedure. However, we have empirically found it a very good approximation af-
ter the active learning procedure has yielded as few as 15 labels. This assumption allows a
tremendous saving in the computational cost, since it helps us avoid repeated re-training of
classifiers in the active label acquisition process while evaluating candidate queries.

A disturbing fact that has been reported in the literature (e.g., in [12]) and that we have
confirmed (in unreported experiments) is that the error rate of the active query selection
increases slightly when the number of labelled samples grows beyond an optimal number.
We conjecture that this may be caused by keeping the hyper-prior parametersα0, β0, α1, β1

fixed at the same value; in all of our experiments we have set them to10−4, corresponding
to an almost uninformative hyper-prior.
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