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Abstract—This work addresses the task of underwater object
recognition in sonar imagery when both human operators and
automated algorithms are available. We discuss the issues that
have impeded previous attempts at automation, raise key insights
related to human perception, present strategies to exploit the skills
of humans and computers synergistically, and demonstrate the
utility of the proposed approaches on a real object-recognition
task employing actual humans acting as operators. Importantly,
the strategies outlined here can be immediately adopted in
existing (unautomated) target recognition systems with minimal
cost, effort, and risk, while still achieving potentially significant
performance gains. Moreover, this progress lays the foundation
for the acceptance of still-further automated systems in the
future. Experimental results are provided from a real mine-
search exercise at sea, with recognition performance as a function
of human operator effort given for various human-computer
divisions of labor.

I. INTRODUCTION

The detection and classification of objects in remote-
sensing imagery is an important task that is common to
many sensor modalities across diverse domains. Although
automation has seen acceptance in certain civilian applications,
high-risk (i.e., life-or-death) object-recognition tasks involving
military assets are still performed almost exclusively by human
operators, often in situ. In order to remove humans from the
threat and to cope with ever-increasing data-collection rates,
automation will be imperative for future object-recognition
systems. However, it has been acknowledged [1] that this
transition away from human operators will be a gradual process
that proceeds incrementally as trust in the automated systems
grows. This caveat suggests that the path to future automation
first requires development of methods by which humans and
computers (e.g., automatic target recognition (ATR) algo-
rithms) can work in concert to achieve improved performance.

In this work, we discuss the issues that have impeded
previous attempts at automation, raise key insights related to
human perception, present strategies to exploit the skills of
humans and computers synergistically, and demonstrate the
utility of the proposed approaches on a real object-recognition
task employing actual humans acting as operators. Although
this work addresses these themes in the context of underwater
target recognition in sonar imagery, the findings should be
applicable to a wide range of object-recognition tasks in

various types of remote-sensing data that seek to employ
humans and computers in a cooperative manner.

The remainder of this paper is organized as follows. Flaws
in earlier automation attempts are discussed in Sec. II, with this
providing the motivation for the cooperative human-computer
strategies proposed in Sec. III. Sec. IV describes a realistic at-
sea experiment involving human operators and the detection
and classification of underwater targets in sonar imagery;
results for various human-computer combinations are also
shown. Concluding remarks are given in Sec. V.

II. FLAWS IN EARLIER AUTOMATION ATTEMPTS

The automation of target detection and classification tasks
currently performed by human operators is a worthy goal.
It is known that the successful completion – by humans –
of these largely repetitive tasks is compromised by factors
such as fatigue, boredom, distraction, and disinterest [2], [3].
However, earlier attempts intended to automate underwater
mine recognition were resounding failures that wound up
inhibiting the acceptance of automation [1], [4]. These failures
can be attributed to an immaturity in the ATR algorithms at the
time, which suffered from excessive false alarm rates and an
inability to adapt to different environmental conditions or sites.
But more fundamentally, these earlier automation attempts
strove for arguably misguided goals and ostensibly overlooked
matters related to human perception.

If an algorithm is designed with the intent to mimic the
processes and decisions that a human performs, the best-
case performance of the automation is essentially limited to
only matching – and not surpassing – human performance
(albeit peak performance when operating in optimal con-
ditions, sans fatigue, etc.). The benefits engendered by the
automation then pertain strictly to saving resources (namely,
time and human effort) and enabling repeatable performance.
Only by exploiting elements that fall beyond the limits of
human perception can automation lead to performance that
exceeds that of humans. For example, rather than developing
features that attempt to capture cues that humans rely on
for detection, other phenomena difficult or impossible to see
with the human eye – but detectable by a computer – can
be exploited. The complementary viewpoints provided by the
human and computer then make the cooperative fusion of their
efforts a logical approach. Therefore, when it is known that



human operators and automated algorithms will be employed
cooperatively, research should be directed with this in mind.
Specific example recommendations to this end, in the context
of the underwater target recognition problem, are provided in
Sec. III-D.

In earlier human-computer cooperation attempts, the out-
puts of detection algorithms were used to cue human oper-
ators to alarms, with this effected by overlaying boxes on
the imagery on the operator’s display screen [5]. However,
this approach has fundamental flaws because it constructs an
artificial saliency map [6] that overrides that of the remote-
sensing imagery itself. By flagging specific alarms, one directs
the attention of the operator to those locations, and as a result,
the operator becomes more likely to miss targets that are not
cued [7], [8]. Therefore, if the detection algorithm cannot be
ensured to achieve a perfect probability of detection, such
cuing will degrade performance.

Another issue with this intrusive cuing approach is that
the burden on the human operator actually increases when
the false alarm rate is high. Rather than saving the operator
time, the well-intentioned automation in fact makes the task
more difficult. It is no surprise then that the first action many
operators took when given systems with automated cuing in
field tests was to shut off the cuing program completely [4],
[8], [9]. Alternative approaches to using automation in the
detection stage are given in Sec. III-B.

III. STRATEGIES FOR HUMAN-COMPUTER COOPERATION
IN TARGET RECOGNITION

We propose various ways of leveraging human opera-
tors and automated algorithms to improve object-recognition
performance – importantly, without significantly increasing
operator burden – depending on mission requirements and
resources (e.g., time or manpower available). The strategies
are described in the context of a task relying on sonar imagery
of a large area of seabed over which underwater targets
(e.g., mines) must be detected and classified. The following
recommendations proceed in terms of increasing levels of
operator effort required.

A. Human as Aid to Classifier

A human operator can aid automated algorithms via active
learning [10], in which the operator provides (potentially
noisy [11]) labels for a subset of the most informative alarms
flagged by a detection algorithm. This human feedback injects
expertise that better tailors the classifier to the site under
consideration. The number of alarms to query the operator
for will necessarily depend on the amount of operator effort
available.

B. Detector as Aid to Human

An automatic detection algorithm can be used to provide a
rapid assessment of the feasibility of performing minehunting
in the area. If the overall alarm rate of the detector is
excessively high, this can be interpreted as a sign that the area
is unhuntable (in the time allotted) and that it is wiser to seek
an alternate route (mission requirements permitting) through
a different area. Using the automated detector to provide a
fast meta-analysis of the mission area in this manner enables

potential time savings (e.g., preventing the scenario in which
an operator searches an area only to come to the conclusion
after much effort that the area is unhuntable) and can also
provide the operator with rough estimates regarding the time
that will be needed to complete the task.

If a human operator is instead supplied – on his first
inspection of the data – with the actual alarms of the detection
algorithm, his own decisions might get biased. Moreover, such
an arrangement could set the precedent in which the operator
eventually relies too heavily on the algorithm, after which the
operator’s own skills deteriorate [8], [12].

An operator should be presented with the alarms flagged
by the automated detection algorithm – time-permitting – only
after he has inspected the data himself. This presentation,
however, should be in the form of both a “mugshot” of each
alarm as well as the larger image scene from which it derives,
because contextual information is valuable (“the perceptual
saliency of stimuli critically depends on surrounding context”
[6]). For example, a mugshot of a rock may appear very mine-
like when it is viewed in isolation, but the same rock may be
easily rejected as a false alarm if it is seen as part of a large
boulder field.

C. Classifier as Aid to Human

If multiple human operators are available, it is useful for
each to make detection and classification decisions in isolation,
as this engenders view diversity among the operators. (This is
analogous to seeking a second opinion on a medical diagnosis.)
Subsequently, the individual predictions can be fused, with
ensemble methods [13] providing principled justification for
such an approach. If the operators instead work in a single
team, the consensus that is arrived at in the decision-making
process will tend to eliminate any view diversity and potential
for improvement via fusion. For the same reasons, the inclusion
of predictions from an automated classification algorithm –
treated, in essence, as an additional operator – is also advised
as another form of human-computer cooperation that provides
potential performance benefit without increasing the burden on
the human operator.

D. Directions for ATR Research

We argue that the directions for future ATR research should
differ depending on whether or not human-computer cooper-
ation is intended. The fusion of human operators and ATR
algorithms can exceed the performance of humans alone if the
latter are developed appropriately. Specifically, complementary
information and viewpoints should be sought from humans and
computer algorithms.

The ATR algorithms to be exploited in human-computer
efforts should attempt to capture elements that a human has
difficulty perceiving. A human operator performing underwater
object detection will naturally be attracted to salient parts of
a scene, like bright highlights and crisp shadows that a target
produces under ideal conditions. The potential benefit of an
automated detection algorithm lies instead in cases where a
human may struggle. Examples of these include an object
lacking a shadow due to poor image quality or multipath
effects, an object in sand ripple fields where highlights of the
object and ripples blend together, and an object at short range



Fig. 1. One example SAS image from the experiment.

(from the sensor) where the shadow is shorter (and hence less
noticeable) due to geometry. A detection algorithm that can
detect targets in these cases – in the “blind spots” of humans
where failure is likely – is truly worthwhile and cooperative.

The development of features for use in an automated clas-
sification algorithm should similarly not try to simply mimic
clues on which a human focuses. For example, from interfer-
ometric synthetic aperture sonar systems, phase information
can provide object height estimates that are not perceivable
to a human operator examining standard sonar imagery. By
developing these sorts of features beyond the limits of human
perception, the view diversity between human and computer
predictions will be strengthened. In turn, potential performance
gains will be possible via fusion because of the complementary
information available for exploitation.

Lastly, a human asked to describe an underwater envi-
ronment would likely think in terms of sediment type (e.g.,
sand, mud, silt) rather than on more subtle characteristics that
directly impact feature calculations. Therefore, an automated
classification algorithm with the ability to use in situ through-
the-sensor data to characterize the local environment and adapt
accordingly can provide benefit where a human is perceptually
limited. In particular, such a classifier might be able to discern
which historical data from other locations is most relevant for
the test site.

IV. AT-SEA EXPERIMENT

A. Background

In April 2013, CMRE participated from the R/V Alliance
in a minehunting exercise conducted at sea by the Spanish navy
off the coast of Cartagena, Spain. The objective of one task
was to detect and classify mines contained in a designated
one square nautical mile area of seabed, within a specific
time allotment. To perform this task, CMRE first deployed a
SAS-equipped autonomous underwater vehicle (AUV) called
MUSCLE to collect sonar imagery of the mission area. The
center frequency of the SAS is 300 kHz and the bandwidth is
60 kHz.

After the entire area was surveyed, the AUV was recovered
and the raw sonar data were downloaded and processed into
SAS imagery with an across-track resolution of 1.5 cm and an
along-track resolution of 2.5 cm; each image spanned 110 m
in the across-track direction and 50 m in the along-track
direction. As each image was created, it was assigned a unique
image number and presented to multiple human operators who
were tasked with detecting mines present in the image. Both
the number and type of mines contained in the mission area
were unknown to the operators. In total, 635 SAS images were
presented to the operators; one example SAS image from the
experiment is shown in Fig. 1.

Conducting a real, time-limited detection and classification
experiment with human operators on actual data under realistic
conditions at sea is very rare and difficult to achieve. For
example, the laboratory simulation in [14] was not time-
constrained, informed participants of the target types in ad-
vance, and compared only classification performance between
humans and an automated algorithm, skipping the important
detection stage of the task. To our knowledge, our study is the
first in the open literature to assess the performance of the full
suite of human-computer combinations, from detection through
classification.

B. Human Operators

The experiment was conducted with four operators.1 The
operators were scientists with varying levels of experience
dealing with mines in sonar imagery. The operators worked in
isolation and did not discuss the data with each other during the
experiment. Each operator examined the images and recorded
the location of each object he felt was a target, and assigned
a (subjective) confidence value from 1 to 5 (5 being most
confident of its identity as a target) to the alarm. On average,
the operators had approximately 30 seconds to examine each
image.

For the subsequent performance analysis, each operator
confidence score – essentially the operator’s classification

1One “operator” was actually a team of two humans, so in total five humans
participated.



prediction for an alarm – was scaled (by dividing by 5) to
represent the probability of being a mine, as this comports
with standard scoring rubrics used by the defense community
[3].

For cases presented later simulating active learning, it was
assumed that the operator labeling of one detection-algorithm-
flagged alarm took 10 seconds. This (binary) labeling was
effected by translating into a label of “target” only those alarms
for which the operator confidence was 4 or 5 (otherwise a label
of “non-target” was assigned).

C. Automated Computer Algorithms

For the cases employing automated algorithms, we em-
ployed specially tailored detection and classification algo-
rithms that we have recently developed. The detection algo-
rithm [15] is an unsupervised method that handles various
elements outlined in Sec. III-D – including poor image quality,
objects in sand ripples, and shadow-length range-dependence
– that tend to be challenging for humans.

The classification algorithm [16] learns an ensemble of
classifiers in which the local environmental characteristics,
measured through-the-sensor, of each alarm determine the
degree to which each base classifier is trusted. The base
classifiers in this framework are relevance vector machines [17]
and were trained using historical data from eight geographical
sites with diverse environmental conditions. Importantly, the
level of similarity between the test site and the historical data
need not be known a priori. Space constraints prevent a more
thorough description of the automated algorithms here.

D. Assessment

The locations and identities of the targets present were
disclosed after the experiment, from which it was determined
that the images contained 16 target views. The number of
alarms flagged by Operators 1 through 4 were 80, 104, 74,
and 51, respectively, with a collective total of 183 unique
alarms. The distribution of the confidence values that each
operator assigned to alarms is shown in Fig. 2. Operators
1, 2, and 3 each failed to detect 1 target, while Operator 4
missed 3 targets. (These results illustrate the variability that can
be obtained with human operators.) The automated detection
algorithm flagged 282 alarms and failed to detect 3 targets.
Pooling all alarms from among the operators and the automated
detection algorithm, there were 353 unique alarms, including
all 16 targets.

The area under an ROC curve (AUC) [18] provides a
convenient summary measure of performance (with scalar
values in [0, 1]) where higher values indicate better perfor-
mance. To facilitate the direct comparison of the performance
using various human-computer combinations for detection and
classification considered here (with different sets of alarms),
all AUC values were computed based on the full universe of
353 unique alarms. We omit the full ROC curves (from which
the AUC values were computed) of the various cases due to
space constraints.

E. Results of Human-Computer Combinations

Fig. 3 shows the AUC values for various human-computer
combinations of detection and classification as a function of

Fig. 2. Distribution of the confidence values that each operator assigned to
alarms.

human operator effort, measured in time (on a logarithmic
scale). As one moves to the right on the x-axis, automation
(and trust in it) decreases. The lettered cases below reference
the legend entries.

Case A corresponds to the scenario in which both detection
and classification are performed by the automated algorithms,
with no human operator involvement. Cases B−E correspond
to the scenario in which the automated detection algorithm
generates the list of alarms, an operator then provides labels
(target or non-target) for 10 alarms, and then the automated
classification algorithm learns a classifier using both the histor-
ical data and the newly labeled data jointly, and then makes fi-
nal predictions on all alarms. For these cases, the operator was
queried for the 10 alarms with the highest detection score, with
the operator confidence scores translated into binary labels
as described earlier. This active learning is a noisy-labeling
process because the operators do not know the true labels
with certainty; for the experiments here, only Operator 2 was
equivalent to an “oracle” assigning perfect labels. Nevertheless,
by incorporating minimal feedback from an operator in this
active learning process, performance improved.

In cases F − I, the automated detection algorithm gener-
ates the list of alarms, but each operator assigns predictions
(i.e., the operator confidence scores) to all alarms. Although
operator effort increases for these cases, performance does
not necessarily improve. Case J is similar except the final
predictions are obtained as the mean confidence score from
all four operators. (Detector alarms that an operator did not
himself flag were assigned a confidence score of 0, which
is consistent with the scoring convention.) Because this case
involves the effort of four operators, the total human effort is
more; however, performance also improves beyond that of any
single operator, as the fusion procedure effectively leverages
the viewpoint diversity of the operators.

Cases K − N correspond to the scenarios in which one
operator performs both detection and classification with no
computer aid. These cases require substantial operator effort,



Fig. 3. Classification performance as a function of human operator effort for various human-computer combinations of detection and classification.

but the performance is typically significantly improved as well.
However, performance can improve still further without any
additional human effort by employing the automated classifi-
cation algorithm. This is demonstrated in Cases P− S, where
the alarms are generated by a human operator but the final
classification is performed by the automated classifier. Still
further improvement can be achieved, again with no additional
operator effort, by fusing the predictions of the operator and the
classifier. This is demonstrated in Cases U−X where the alarms
are again generated by a human operator but final predictions
are taken to be the mean of the operator’s (scaled) scores
and the classifier’s predictions. The performance improvement
in these cases can be attributed to the viewpoint diversity
that the human operators and automated algorithms provide.
These results illustrate the immediate performance gains –
without additional operator burden – that can be achieved by
incorporating human-computer cooperation.

The value of fusing the efforts of multiple human operators
can be seen in Case O, which pools the alarms generated by the
four human operators and makes predictions based on the mean
confidence score. Case T corresponds to the same scenario
except that the final predictions are based on the automated

classification algorithm rather than the operators’ scores. Case
Y corresponds to a similar scenario, except the final predictions
are taken to be the mean of the operators’ (scaled) scores
and the classifier’s predictions. These three cases require the
most operator effort because all four operators are used.
However, the considerable viewpoint diversity elicited from
multiple human operators and the automated algorithm result
in the best performance. In these cases, the inclusion of the
automated classifier – which can be viewed as another operator
– is even more valuable than an additional human operator
because the automated classifier has the potential to provide
complementary information that is impossible for a human to
perceive.

Although the differences in AUC values are small among
certain cases, it should be realized that the reduction of
even a single false alarm is valuable. Typically, each alarm
declared a target would necessitate the time-consuming and
dangerous task of optical inspection – either with human divers
or camera-equipped remotely-operated vehicles. Because this
process can take upwards of a half hour per object, even slight
improvements in the AUC translate to significant time-savings
in real operations.



V. CONCLUSION

Specific strategies for cooperatively employing human op-
erators and automated computer algorithms have been provided
for underwater target recognition applications. It has been
experimentally demonstrated that fusing the skills of a human
(or multiple humans) and computers can significantly improve
performance beyond that which is achievable with only one
type of operator thanks to the view diversity that is engendered.
This progress lays the foundation for the acceptance of still-
further automated systems in the future.
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