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Abstract

A new algorithm for performing classification with ObjeCtive: CIaSSiW underwater ObjeCtS asS
imperfectly labeled data is presented. The proposed targets (i_e_, mineS) or clutter (e.g., rOCkS).

approach is motivated by the insight that the average
prediction of a group of sufficiently informed people is

aften more accurate than the prediction of any one sup- Tr ai n | n g d ata co I I a Ct| on:

pased expert. This idea that the “wisdom of crowds”

can outperform a single expert is implemented by draw- - Depl()y kn own targ ets at a Site :
ing sets of labels as samples from a Bernoulli distribu- -C OI | ect sonar im ag ery USi ng an autonomous

tion with a specified labeling error rate. Additionally,
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vide a principled way for determining an appropriate Manually label o bjects based on target Range (m)

number of label sampling rounds to consider. The ap- - = (a) (b)
proach is demonstrated in the context of an underwater | - qan|gyment knowledge. Figure 1. (a) A typical SAS image with mines indicated in green boxes. (b) A SAS image chip

mine classification application on real synthetic aper-

ture sonar data collected at sea, with promising resulis. of a typical alarm.

Experimental results:

Issues with labeling: Data collected at sea off coast of Latvia at two sites (Riga and Liepaja)
- Other unknown objects may already be present ll Detection: highlight-shadow patterns characteristic of m%nes P
- AUV navigation errors complicate process. | About 360 c?atag oints per rgission '
» Manually assigned labels may be incorrect. , | P P " Table 1. AUC (mean + one standard devia-
Feature_s- tion from the six trials) for each of the two
| -5 for size and shape. test sites.
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I | 0 044 085 0 0115 0.23 0 23 al e 100

is often more accurate than one sup:;;)osed expert. crcbabilty of Fase Al crosabity of Relse A umber of Sarmping Rounds
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