
IMAGE-QUALITY PREDICTION OF SYNTHETIC APERTURE SONAR IMAGERY

David P. Williams

NATO Undersea Research Centre
Viale San Bartolomeo 400, 19126 La Spezia (SP), Italy

ABSTRACT

This work exploits several machine-learning techniques to address
the problem of image-quality prediction of synthetic aperture sonar
(SAS) imagery. The objective is to predict the correlation of sonar
ping-returns as a function of range from the sonar by using mea-
surements of sonar-platform motion and estimates of environmen-
tal characteristics. The environmental characteristics are estimated
by effectively performing unsupervised seabed segmentation, which
entails extracting wavelet-based features, performing spectral clus-
tering, and learning a variational Bayesian Gaussian mixture model.
The motion measurements and environmental features are then used
to learn a Gaussian process regression model so that ping correla-
tions can be predicted. To handle issues related to the large size of
the data set considered, sparse methods and an out-of-sample ex-
tension for spectral clustering are also exploited. The approach is
demonstrated on an enormous data set of real SAS images collected
in the Baltic Sea.

Index Terms— Image-Quality Prediction, Synthetic Aperture
Sonar (SAS), Gaussian Process Regression, Spectral Clustering,
Sparse Methods, Out-of-Sample Extension, Variational Bayesian
Gaussian Mixture Models, Unsupervised Seabed Segmentation,
Large Data Sets.

1. INTRODUCTION

Synthetic aperture sonar (SAS) provides high-resolution imaging
of underwater environments by coherently summing sonar ping-
returns. The correlation between successive pings at a given range
(i.e., distance from the sonar) provides a measure of the success of
the SAS processing, as this quantity is directly proportional to the
signal-to-noise ratio (SNR) [1].

Processing sonar returns into SAS imagery is a computation-
ally intensive procedure. The ability to do this processing in near
real-time onboard a sonar-equipped autonomous underwater vehicle
(AUV) is a considerable challenge. Therefore, when tasked to sur-
vey a large area of seabed, an AUV will follow a pre-programmed
route, with the SAS image-processing done post-mission. The route
specified for the AUV assumes that a sufficiently high level of image
quality will be attainable up to a certain range.

However, the ability to successfully reconstruct SAS images —
and in turn, the achievable area coverage — depends on the motion
of the sonar-equipped platform and on the environmental character-
istics of the area (such as the seabed-type and the water properties).
Excessive platform motion will limit the range for which the coher-
ent summation of pings is possible. Similarly, if the seabed is soft
(e.g., muddy), less sonar energy will return to the receivers, also
limiting the range to which a SAS image can be reconstructed suc-
cessfully.

The objective of this work is to predict the SAS image-quality
— in terms of the correlation of sonar pings — as a function of range
from the sonar. The goal is to make this prediction — without per-
forming the computationally-intensive SAS processing — by using
measurements of platform motion and estimates of environmental
characteristics. If the range to which the resulting SAS imagery will
be of sufficient quality can be predicted, the route of an AUV can
be adapted in-mission to both maximize its coverage rate and pre-
vent missing areas of coverage. Moreover, the study can be used to
understand the conditions for which SAS processing fails.

To achieve the stated goal, environmental characteristics are es-
timated by effectively performing unsupervised seabed segmenta-
tion, which entails extracting wavelet-based features [2], performing
spectral clustering [3, 4], and learning a variational Bayesian Gaus-
sian mixture model [5]. Motion measurements collected onboard the
platform and environmental features are then used to learn a Gaus-
sian process regression model [6] so that predictions of the ping cor-
relation can be made. To handle issues related to the large size of the
data set considered, sparse methods [7] and an out-of-sample exten-
sion [8] for spectral clustering are also exploited. The approach is
demonstrated on an enormous measured data set of real SAS images
spanning a total area of approximately 44 km2 in the Baltic Sea.

The remainder of the paper is organized in the following manner.
Sec. 2 briefly reviews the aspects of SAS processing relevant for the
problem under study, while Sec. 3 describes the process by which
features are extracted. Sec. 4 shows experimental results obtained
on a data set of real SAS images. Concluding remarks and directions
for future work are given in Sec. 5.

2. SYNTHETIC APERTURE SONAR (SAS)

The high-resolution imaging of underwater environments provided
by synthetic aperture sonar (SAS) can be used for applications such
as mine detection, seabed classification, and the laying of gas or oil
pipelines.

A SAS system transmits a broad-band signal such that each loca-
tion on the seafloor is insonified by multiple pings. The ping returns
are recorded onboard the sonar-equipped platform, such as an au-
tonomous underwater vehicle (AUV). In order to reconstruct a SAS
image, the returns are coherently summed by accounting for the time
delay of signals at different ranges from the platform. The correla-
tion between successive pings (which is directly proportional to the
SNR [1]) at a given range can be computed, with this quantity pro-
viding a measure of the success of the SAS processing.

The displaced phase-center antenna (DPCA) method [1] is a
popular data-driven approach used to reconstruct SAS imagery. The
algorithm reconstructs a SAS image from Np

i collected pings by
block-processing in the range direction at Nr

i adaptively-determined
DPCA range centers and windows. (For the data set considered
in this work, the mean number of DPCA ranges per image was



12.2416.) A byproduct of the processing is the correlation of each
pair of consecutive sonar pings at each DPCA range.

For the i-th SAS image, there will be Np
i correlation values at

each of the Nr
i DPCA ranges. To obtain a more robust summary

measure of the correlation, we compute the mean correlation value
(over the Np

i correlation values) at each of the Nr
i ranges. It is these

Nr
i mean correlation values of the i-th SAS image that we wish to

predict in this work.

3. FEATURES FOR PREDICTING PING CORRELATION

The ability to successfully perform SAS processing depends not only
on the motion of the sonar platform (e.g., AUV), but also on the
environmental characteristics of the seabed and the properties of the
water through which the signals propagate [9].

In this work, platform motion measurements and seabed-type
estimates are used as features to predict the ping correlation as a
function of range.

3.1. Motion Features

Platform motion is recorded onboard the vehicle via an inertial nav-
igation system (INS), and hence readily accessible. The dm = 5
motion measurements used in this study are the roll, pitch, and yaw
of the vehicle (i.e., rotations of the vehicle about three orthogonal
axes), and the speed of the vehicle in the longitudinal and transverse
directions.

3.2. Environmental Features

The environmental features used in this study are based on an unsu-
pervised seabed segmentation algorithm, and are related to the pro-
portion of seabed area that belongs to each of k different seabed-
types at each range. The manner in which these features are ex-
tracted is described below.

In this work, the “atomic” unit for seabed segmentation is as-
sumed to be a 2 m × 2 m area of seabed. That is, each 2 m × 2 m
area of seabed corresponds to one data point. This particular size
was chosen as a compromise among several factors. The larger the
area chosen, the more likely that a single data point will have the
unfavorable property of containing multiple types of seabed. How-
ever, if the area is too small, the distinguishing characteristics of the
seabed that indicate a certain seabed-type may be lost.

The proposed unsupervised seabed segmentation algorithm con-
sists of three main steps. First, as in [2], a vector of dw = 16 fea-
tures derived from the coefficients of a wavelet decomposition are
extracted for each 2 m× 2 m area of seabed.

Spectral clustering [3, 4] is then applied, which transforms the
data into a new, lower-dimensional space via an eigendecomposi-
tion. In this work, modifications to the standard spectral clustering
approach are taken to address certain aspects encountered in the task
at hand. Among these enhancements are the “sparsification” of key
matrices to handle very large data sets [7], an automatic self-tuning
of a parameter in the requisite affinity matrix [10], an out-of-sample
extension to embed data points not present when the eigendecom-
position is performed [8], and a decision to distinguish between the
number of eigenvectors retained and the number of clusters desired.
We integrate these various extensions into the standard spectral clus-
tering algorithm of [4] in this work. Space constraints preclude
showing the details of the algorithm here.

The last step of spectral clustering is to cluster the normalized
(in-sample) embedded data, into k clusters via a clustering algo-

rithm. In this work, a variational Bayesian Gaussian mixture model
(GMM) referred to as component splitting [5] is used as the cluster-
ing algorithm. This method is employed because it can, in a single
run, learn a GMM and determine the appropriate number of mixture
components that are represented in the data.

Seabed segmentation is effected in this step by assigning each
data point to the mixture component that maximizes its posterior
probability. Environmental features are then extracted from the re-
sult of the seabed segmentation as follows.

Let the number of 2 m × 2 m seabed blocks in the i-th SAS
image that are within the j-th DPCA range window be N

(i,j)
b . Sup-

pose each seabed block has been assigned to a component of the
k-component GMM. Let N

(i,j,k)
b be the number of seabed blocks

within the j-th DPCA range window of the i-th SAS image that was
assigned to the k-th GMM component. The k-th environmental fea-
ture for the j-th DPCA range window of the i-th SAS image is then
defined to be the fraction xe

(i,j)(k) = N
(i,j,k)
b /N

(i,j)
b .

3.3. Discussion

Spectral clustering is well-suited for the task of seabed segmenta-
tion because an area of seabed corresponding to a particular seabed-
type (e.g., sand ripples) often undergoes a gradual change in appear-
ance in SAS imagery. Spectral clustering will recognize that such a
“chain” of data points should belong to the same cluster [11].

In the standard formulation of spectral clustering, rigorous the-
oretical underpinnings justify that the number of eigenvectors re-
tained, m, is set equal to the number of clusters, k to be found [4,11].
However, we choose to go against this convention for our particular
application. As noted in [10], when dealing with noisy data, the
“ideal” block-diagonal affinity matrix is not attained. As a result,
using the eigen-gap [4] to determine the number of clusters in the
data is unreliable, because the progression of the eigenvalues may
not exhibit a distinct jump in magnitudes.

For our application, the number of clusters (i.e., seabed types) is
not known a priori. Therefore, rather than adopting a questionable
approach with spectral clustering to determine the number of clus-
ters, we transfer this burden onto the GMM. This decision makes
sense for several reasons.

By doing so, we can choose to retain a very small number of
eigenvectors (e.g., m = 2), which accelerates the eigendecom-
position computation. Choosing the number of clusters based on
the eigen-gap would instead require a complete eigendecomposi-
tion (or at least many more eigenvectors to be computed), which is
computationally-intensive for the very large data set considered in
this work.

By embedding the data into such a low-dimensional space via
spectral clustering, the complexity (i.e., number of parameters to
estimate) of the subsequent GMM is also greatly reduced, which
simplifies learning. In addition, the variational Bayesian GMM ap-
proach adopted in this work naturally determines the number of mix-
ture components in a principled way. Moreover, the algorithm can
ascertain this number in a single run, which is again valuable with
such a large data set.

4. EXPERIMENTAL RESULTS

4.1. Data Set

In April-May 2008, the NATO Undersea Research Centre (NURC)
conducted the Colossus II sea trial in the Baltic Sea off the coast of
Latvia. During this trial, high-resolution sonar data was collected by



the MUSCLE autonomous underwater vehicle (AUV). This AUV
is equipped with a 300 kHz sonar with a 60 kHz bandwidth that
can achieve an along-track image resolution of approximately 3 cm
and an across-track image resolution of approximately 2.5 cm. The
sonar data was subsequently processed into synthetic aperture sonar
(SAS) imagery.

The data set consists of 8,097 SAS images. Each image covers
50 m in the along-track direction. The vast majority of images cover
110 m in the across-track (i.e., range) direction, typically from 40 m
to 150 m away from the AUV. A small number of the images cover
ranges as close as 20 m or as far away as 200 m. The total area
spanned by the entire data set of images is approximately 44 km2.

In this work, the Ns = 8, 097 SAS images contain a to-
tal of Nb = 10, 984, 025 2 m× 2 m seabed blocks. There are
Nr = 99, 120 image-range pairs for which we possess the (mean)
ping correlation value (i.e., the quantity we wish to predict using
motion and environmental features).

4.2. Training Stage

For the experiments conducted here, N tr
s = 200 of the images were

randomly selected to be used as training images, with the remaining
N ts

s = 7, 897 images treated as testing images. Among the train-
ing images, there were a total of N tr

b = 271, 250 seabed blocks and
N tr

r = 2, 437 image-range pairs.
For each of the N tr

r training data points, motion and environ-
mental features were extracted as described in Sec. 3. Specifically,
for each of the N tr

b seabed blocks, wavelet features were extracted
and spectral clustering (with m = 2 eigenvectors retained) was ap-
plied. The variational Bayesian component splitting method was
then used to learn the requisite GMM, which resulted in k = 14 mix-
ture components. For each seabed block, assignment to the GMM
component for which the posterior probability was a maximum was
then made, which effected a segmentation of the seabeds of the train-
ing images. The k = 14 environmental features were then calculated
for each of the N tr

r image-range pairs.
Three different GP regression models [6] were then learned so

that the ping correlation value could be predicted as a function of
range and other input features. In all three models, the target output
was the mean correlation value of each “data point” (i.e., image-
range pair). The three models differed in the input features that were
employed. All three models included the scalar range as a feature,
while the first model also included the vector of dm motion features,
the second model also included the vector of k environmental fea-
tures, and the third model included both motion and environmental
features.

4.3. Testing Stage

For the experiments conducted here, the remaining N ts
s = 7, 897

images were used as testing images. Among these testing im-
ages, there were a total of N ts

b = 10, 712, 775 seabed blocks and
N ts

r = 96, 683 image-range pairs.
For each of the N ts

b seabed blocks, wavelet features were ex-
tracted, the out-of-sample extension for spectral clustering was ap-
plied, and assignment to the GMM component for which its poste-
rior probability was a maximum was made; this last step effected
a segmentation of the seabeds of the testing images. The k = 14
environmental features were then calculated for each of the N ts

r

image-range pairs. Finally, the correlation value for each of the N ts
r

image-range pairs was predicted using each of the three learned GP
regression models.

4.4. Results

In all results reported here, the term “error” refers to the absolute
error of the ping correlation values.

To compare the three GP regression models, the proportion
of the N ts

r = 96, 683 image-range pairs (i.e., “data points”) for
which each model obtained a lower error than the other models
was computed. Because a set of image-range pairs are associated
with each image, one can also compute the mean error (averaged
across the image-range pairs belonging to an image) for each of the
N ts

s = 7, 897 testing images. This method of assessment is more
realistic than comparing individual image-range pairs because in
practice, one wishes to make predictions for all ranges of an image
jointly, not just at one particular range. Prediction results in terms
of the proportion of image-range pairs and also the proportion of
images for which each model obtained a lower error than the other
models are presented in Table 1 and Table 2, respectively.

Table 1. Proportion of image-range pairs for which each model
obtained a lower prediction error than each competing model.

COMPETING MODEL
MODEL M E M+E

MOTION (M) ——– 0.4268 0.4015
ENVIRONMENT (E) 0.5732 ——– 0.4860

M+E 0.5985 0.5140 ——–

Table 2. Proportion of images for which each model obtained a
lower mean prediction error than each competing model.

COMPETING MODEL
MODEL M E M+E

MOTION (M) ——– 0.3586 0.3109
ENVIRONMENT (E) 0.6414 ——– 0.4541

M+E 0.6891 0.5459 ——–

A main motivation for conducting this study was to predict the
maximum range to which a SAS image could be successfully recon-
structed to a sufficiently high level of quality. Therefore, the perfor-
mance of the three GP regression models as a function of range is
shown in Fig. 1. (Each range bin spans 10 m, with the exception of
the last bin, which runs from 150 m to 200 m since there were con-
siderably fewer data points in that range of ranges.) The mean error
(averaged across the image-range pairs that fell within each given
range bin) is shown for each of the three GP regression models.

As can be seen from Tables 1 and 2 and Fig. 1, the models that
included the environmental features consistently perform the best.
Of particular interest to our study, however, is prediction perfor-
mance at long ranges. In this regime, the model incorporating both
motion features and environmental features was most accurate.

The results presented above are for a very large data set and are
only mean results. To more closely examine performance at an in-
dividual image level, we show the GP regression correlation predic-
tions for an example SAS image, along with the actual SAS image,
in Fig. 2. (Space constraints preclude showing more example images
and results here.)

The SAS image in Fig. 2(a) is notable because the near-range
contains relatively flat seabed, while the far-range contains seabed
structure (such as rocks and ridges). The presence of seabed struc-
ture counteracts the natural correlation degradation that typically



Fig. 1. Mean prediction error as a function of range bin for each GP
regression model.

(a)

(b)

Fig. 2. (a) A SAS image and (b) its associated GP regression corre-
lation predictions.

occurs at longer ranges, thereby permitting high correlation values
from being obtained. The GP regression models that account for
environmental features are able to exploit this information and ac-
curately predict the relatively high correlation values at the longer
ranges.

5. CONCLUSION

This work was an application paper that exploited several machine-
learning techniques to address the problem of synthetic aperture
sonar (SAS) image-quality prediction. The problem is important
because if the range to which the resulting SAS imagery will be
of sufficient quality can be predicted, the route of an AUV can be
adapted to both maximize its coverage rate and prevent missing areas
of coverage. Moreover, the study can be used to better understand

the conditions for which SAS processing fails.
The experimental results suggest that prediction of the SAS

image-quality in terms of the correlation values via motion mea-
surements and environmental characteristics is indeed feasible.
The results also demonstrated that using both motion features and
environmental features together achieved the best prediction perfor-
mance at the long ranges of particular interest.

Future work will seek to incorporate other environmental mea-
surements (e.g., wind speed, water temperature) as additional fea-
tures in the regression model.

Often, before collecting any sonar data, one will possess rough
a priori knowledge of the seabed-types over the area of interest, in
the form of a seabed map. However, for the data set considered
in this work, such a seabed map was not available. Therefore, to
assess the feasibility of the image-quality prediction task, environ-
mental features were extracted from the seabed segmentation that
was performed on the data. Admittedly, this approach should pro-
duce the optimal performance, since the “a priori” seabed knowl-
edge is essentially assumed to be perfect. Future work will examine
correlation-prediction performance when the environmental features
are based on only a priori seabed knowledge possessed before data
collection commences (rather than on the segmentation of the actual
imagery that would not be available).
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